

Autonomic Neuropathies

Aditi Varma-Doyle, MD
Instructor
Division of General Neurology, Department of Neurology
Brigham and Women's Hospital
Harvard Medical School

Aditi Varma-Doyle, MD

Neurology Residency @ Louisiana State University Health Sciences Center, New Orleans, LA

Autonomic Neurology Fellowship @Beth Israel Deaconess Medical Center, Harvard Medical School

Advanced General and Autoimmune Neurology, Massachusetts General Hospital, Harvard Medical School

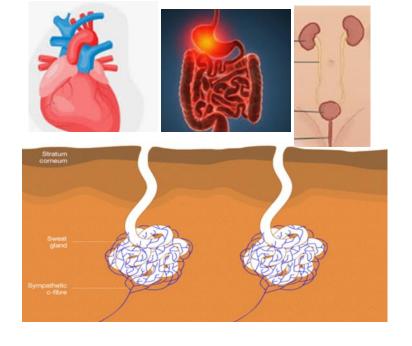
Current MPH graduate student, Johns Hopkins School of Public Health, Baltimore, MD ²

DISCLOSURES

No Disclosures

OBJECTIVES

- 1. Classification and types of Autonomic Neuropathy
- 2. Identify clinical presentations of autonomic neuropathy
- 3. Management of Autonomic Neuropathies



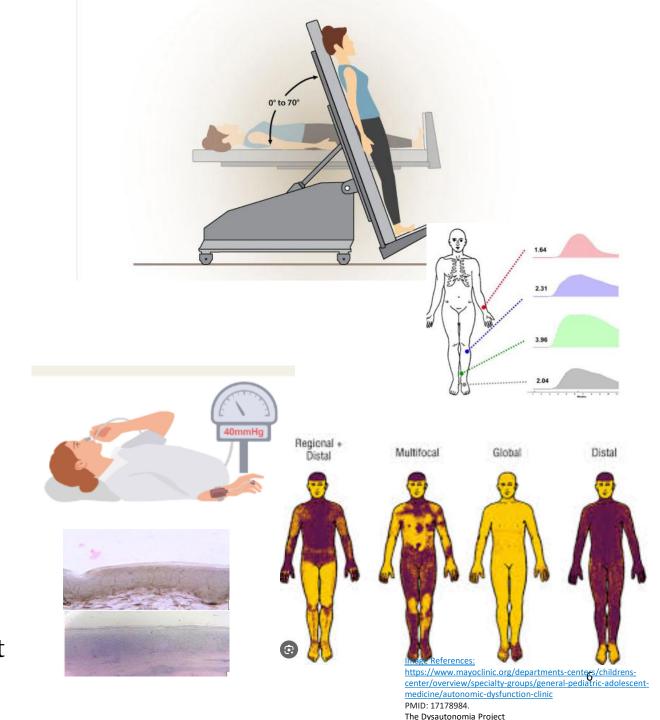
Autonomic Nerves: what and where are they?

Small, lightly myelinated or unmyelinated nerves:

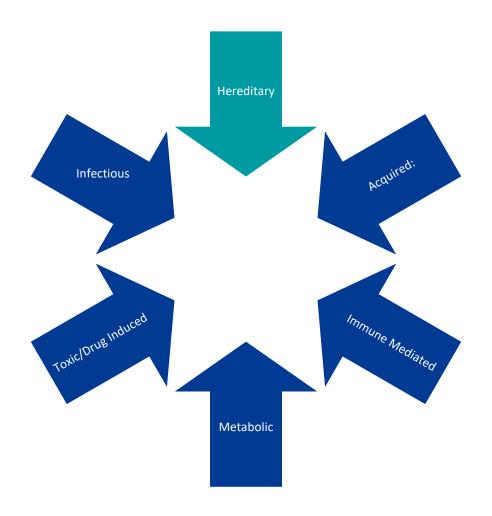
Innervate organs & structures involved in:

Cardiovascular
Gastrointestinal
Urogenital
Sudomotor / Thermoregulatory
Pupillary
Immune function

Autonomic symptoms: nonspecific Standard neurophysiologic studies are unable to evaluate small unmyelinated or lightly myelinated nerves


Autonomic reflex assessments:

Parasympathetic nervous system: Heart rate variability to Valsalva maneuvers, Deep Breathing, Orthostasis (Standing/Tilt)
Sympathetic Adrenergic System: BP


response to Valsalva, Orthostasis (Standing/Tilt), Hand Grip Test

Sympathetic Cholinergic System: Sweat Responses, QSART (Quantitative Sudomotor Axon Reflex Test), Thermoregulatory Sweat Testing

Plasma catecholamines, Structural studies of cutaneous autonomic innervation: Skin Biopsy, Sweat Cland Density

Peripheral Autonomic Neuropathies

HEREDITARY AUTONOMIC NEUROPATHIES

Hereditary sensory and autonomic neuropathies (HSANs): I-V: Autonomic manifestations occur to a varying degree and mode of inheritance varies

HSAN I: Autosomal dominant, hereditary sensory radiculoneuropathy, presenting in the second decade. Mutations: (SPTLC1, SPTLC2, ATL1, RAB7A, and DNMT1)

HSAN II: Autosomal Recessive/Sporadic, presenting in infancy/childhood. Is a congenital sensory neuropathy. Mutations in WNK1, RETREG1, and KIF1A

HSAN III: (also known as Riley-Day syndrome/familial dysautonomia): Autosomal recessive; Ashkenazi Jewish descent, with prominent autonomic manifestations.

Genetic Mutations: Homozygous mutations in the ELP1 (Elongator complex protein 1) gene or I-κ-B kinase complex associated protein (IKAP)

Infancy (Hypotonic),

Sensory/Somatic Nerves are affected: Reduced pain and temperature sensation, absent deep tendon reflexe s, and Sensory Gait ataxia.

Baroreflex receptor dysfunction → Orthostatic hypotension, BP lability, Abnormal cardiovascular function and ventilatory responses to hypoxia and hypercapnia.

Poor sucking and feeding, esophageal reflux with vomiting and aspiration, and swallowing dyscoordination Defects in lacrimation, absent/hypoactive corneal reflexes, and absence of lingual fungiform papillae.

HSAN IV (Congenital Insensitivity to Pain with Anhidrosis [CIPA] or Hereditary Sensory and Autonomic Neuropathy): second most common HSAN.

Autosomal recessive,

Missense, nonsense, frameshift, and splice-site loss-of-function mutations in the NTRK1 (TRKA) gene which encodes a high-affinity tyrosine kinase receptor for nerve growth factor (NGF).

Insensitivity to pain, consequent acral ulceration, painless fractures, and other trophic injuries.

Anhidrosis, episodes of unexplained fever, Intellectual and motor developmental delay.

Fabry disease:

X-linked lysosomal storage disease

Decreased activity of alpha-galactosidase A ->lysosomal accumulations of neutral glycosphingolipids and globotriaosylceramide

Severe pain that begins in the distal extremities

Hypohidrosis: Gb3 deposition causing sweat gland dysfunction as well as damage to autonomic small fibers.

Abnormal pupillary responses to pilocarpine, reduced saliva production and tear formation

AFT: Abnormal cardiovascular responses including decreased reflex rises in plasma noradrenaline

Serology: Low alpha-Gal A activity in leukocytes or plasma Skin biopsy usually reveals high lipid content. Lipids may also be found inside muscle fibers, endothelial cells, ganglion cells

Young adults presenting with a PROTHROMBOTIC STATE: cerebrovascular event, (periventricular white matter, basal ganglia, supra and infratentorial, pulvinar calcifications)
+ myocardial infarction + renal dysfunction

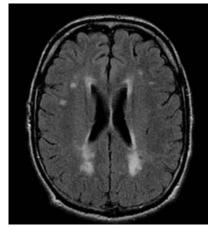
+ Skin Lesions (Skin Lesions: Angiokeratoma corporis diffusum

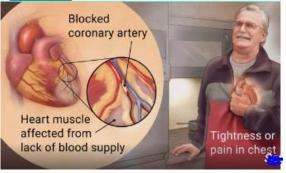
Treatment:

Replacement of deficient enzyme alpha-galactosidase A (alpha or beta) as soon the diagnosis is made <u>agalsidase alfa</u> 0.2 mg/kg every other week (EOW) (Shire) and <u>agalsidase beta</u> 1.0 mg/kg EOW (Fabrazyme)

Hypertension: angiotensin-converting enzyme inhibitor or angiotensin receptor

blocker


Renal transplantation, continued enzyme replacement post-transplant.



Allgrove syndrome Triple –A syndrome + autonomic =4A syndrome

Autosomal recessive. Mutations of the *AAAS* gene on chromosome 12q13-> Nuclear envelope protein known as *ALADIN* (alacrimia-achalasia-adrenal insufficiency neurologic)

ACTH resistant adrenal insufficiency(presents later), alacrimia (infancy), and achalasia (infancy/child) +progressive neurological impairment +/-mild mental retardation

Young adults: Postural dizziness, erectile dysfunction and loss of spontaneous morning erections, Diarrhea/GI/GU AFT: abnormal reaction to intradermal histamine, abnormal sweating, orthostatic hypotension, and heart rate disturbances. Progressive loss of cholinergic functions

Schirmer test can reveals bilateral alacrima, Barium swallow : Achalasia cardia.

Medical Management

Glucocorticoids (hydrocortisone, prednisone, dexamethasone, and fludrocortisone)

Topical ocular lubricants

Perioperative treatment with stress doses of glucocorticoids Pneumatic dilatation, Modified heller operation

Hereditary sodium channelopathy-related small fiber neuropathy

- Autonomic manifestations in small fiber neuropathies associated with ion channel mutations.
- Inheritance: Autosomal dominant
- Gene mutations (G-o-F, missense) encoding **sodium** channels NaV1.7 (SCN9A), NaV1.8 (SCN10A), and NaV1.9 (SCN11A)
- Voltage-gated sodium channel isoforms: preferentially expressed on sensory neurons, dorsal root ganglion
- Pro-excitatory changes in channel physiology -> hyperexcitability
- Neuropathic (often beginning in the distal extermities and with a burning quality) + autonomic dysfunction (e.g. orthostatic dizziness, palpitations, dry eyes and mouth)
- AFT: abnormal quantitative sensory testing
- Skin Biopsy: reduction in intraepidermal nerve fiber density.
- Large fiber functions (i.e. normal strength, tendon reflexes, and vibration sense) and nerve conduction studies are typically normal.
- PRIMARY Erythromelalgia: bilateral presentation of skin redness and burning pain distally on extremities, triggered by warmth and relieved by cooling.
- Inherited 'paroxysmal extreme pain disorder' or PEPD: aka familial rectal pain (can be seen in Infants): Paroxysms of excruciating deep burning pain often in the rectal, ocular, or jaw areas, but also diffuse..
- Autonomic manifestations predominate initially, with skin flushing in all and harlequin color change and tonic attacks (misdiagnosed as epilepsy). Dramatic syncope, with bradycardia, asystole. Attacks are triggered by factors such as defecation, cold wind, eating, and emotion.

 Treatment: sodium channel blocking agents, such as carbamazepine and lidocaine, mexiletine, gabapentin

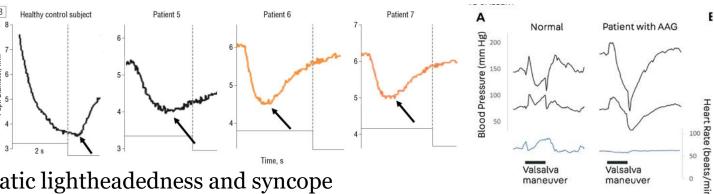
Immune Mediated Autonomic Neuropathies:

Autonomic Disorders With Definite Autoimmune Etiology

- **♦** Autoimmune autonomic ganglionopathy
- **♦** Paraneoplastic autonomic/enteric neuropathy

Unclear Autoimmune Etiology Immune-mediated sensory and autonomic neuropathies **Postural tachycardia syndrome**

Autoimmune Disorders With Prominent Autonomic Features


Lambert-Eaton myasthenic syndrome Guillain-Barré syndrome

N-methyl-D-aspartate (NMDA) receptor encephalitis Leucine-rich glioma inactivated protein 1 (LGI1) and contactin-associated proteinlike 2 (CASPR2) antibody disorders (including Morvan syndrome) Dipeptidyl-peptidase—like protein 6 (DPPX)—associated encephalitis

Sjögren syndrome, SLE, RA, Ankylosing Spondylitis, Sarcoid

Case 1

A 50-year-old woman presented with orthostatic lightheadedness and syncope Dry mouth, dry eyes, difficulty driving at night and adjusting to lighting changes Severe constipation

Urinary retention with overflow incontinence, chronic intermittent urinary catheterization was required.

On autonomic testing:

Heart rate variability to deep breathing and Valsalva: reduced

Adrenergic blood pressure response to Valsalva impaired with delayed pressure recovery time phase IV Tilt-table testing, her supine blood pressure was 172/79 mm Hg with a heart rate of 68 beats/min. After 5 minutes of head-up tilt, her blood pressure fell to 90/59 mm Hg with a heart rate of 65 beats/ min.

QSART: Reduced at all sites

Quantitative pupillometry reveals premature pupillary re-dilation to prolonged light stimulus (pupillary fatigue) Diagram, Muppidi S et al. 2012

Composite Autonomic Severity Score (CASS) indicating moderate to severe impairment

Question: What antibody should be checked for in serum? Serum ganglionic nicotinic acetylcholine (ACh) receptor antibodies

Autoimmune Autonomic Ganglionopathy

Autoantibodies specific for the ganglionic nicotinic ACh receptor the $\alpha 3$ subunit Diffuse failure of sympathetic, parasympathetic, and enteric systems

Usually 5th-7th decade but can be seen in younger patients.

2:1 female: male Also, transient neonatal autoimmune autonomic ganglionopathy due to placental transfer of maternal antibodies can occur.

Occasionally, sensory, neuropsychiatric symptoms

EMG/NCS are typically normal. CSF analysis may reveal mildly elevated protein without pleocytosis. Sural nerve biopsy: nonspecific, +/- decreased numbers of small fibers

Antibody levels greater than 1.0 nmol/L are fairly specific for autoimmune autonomic ganglionopathy, correlates with severity of disease

< 0.2 nmol/L: non specific

0.2 nmol/L-1.0 nmol/L: Chronic slowly progressive AAG, isolated gastrointestinal dysmotility (10%), chronic intestinal pseudoobstruction (50%), PAF

Low levels of gAChR antibodies: autoimmune neurologic and rheumatologic diseases and malignancies, postural orthostatic tachycardia syndrome

Treatment:

IV immunoglobulin (IVIg) and plasma exchange combination therapies with oral immunosuppressants Rituximab, Mycophenolate mofetil

Isolated cholinergic neuropathy

+/-gAChR antibodies (low levels)

Idiopathic anhidrosis: Heat intolerance due to inadequate sweating, skin flushing,

lightheadedness

Rash (cholinergic urticaria),

Compensatory hyperhidrosis of other areas (face, axillae, palms, and soles).

Treatment:

Steroids, particularly if administered early in the course.

50% of idiopathic subacute autonomic failure

Response to immunotherapy has been reported in seronegative cases.

Guillain-Barré syndrome

Molecular mimicry between epitopes on the infectious agent (eg *Campylobacter jejuni*) and neuronal gangliosides

Autonomic dysfunction: 2/3 of cases, even with mild motor symptoms.

More common in acute inflammatory demyelinating polyradiculoneuropathy (AIDP) than in the motor axonal (AMAN) or Miller Fisher variants

Cardiovascular manifestations: sinus tachycardia, and also hypertension (posterior reversible encephalopathy syndrome), bradyarrhythmias, which can be lifethreatening

Gastrointestinal dysfunction: paralytic ileus, diarrhea, urinary retention

Abnormal sweat responses, Horner syndrome

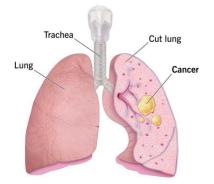
Treatment: Immunotherapy (either PE: caution in patients with cardiovascular instability, or IVIG)

Careful monitoring and meticulous supportive care for respiratory and autonomic deterioration (HR, BP).

Intensive care is indicated for those with hemodynamic instability and severely debilitated patients.

Immune Mediated Autonomic and Sensory Neuropathy

Acute onset, often with an antecedent upper respiratory infection.


Sensory symptoms, including neuropathic pain, sensory ataxia

Objective evidence of small or large fiber sensory involvement.

Treatment: High-dose IV steroids, even when antibody-targeted therapies (IVIg, plasma exchange, rituximab) were ineffective.

PARANEOPLASTIC AUTONOMIC OR ENTERIC **NEUROPATHY**

In context of systemic malignancy

Onset of paraneoplastic neurologic syndromes usually precedes the diagnosis of malignancies, or early stage Limbic encephalitis, cerebral ataxia, or sensory neuronopathy

The most common antibodies associated with paraneoplastic autonomic neuropathy are.

Anti-Hu: small cell lung carcinoma (SCLC)

Anti-CRMP5: SCLC or thymoma.

gAchR: Paraneoplastic disease due to gAChR antibodies (lung cancer, thymoma) is clinically indistinguish Anti-Hu and anti-CRMP5 are both directed against intracellular antigens Neuronal injury: cell-mediated a irreversible.

Eradicate the malignancy, + agents that target cellular autoimmunity.

Lambert–Eaton myasthenic syndrome
Motor symptoms (proximal leg weakness, areflexia, mild oculobulbar weakness)
Cholinergic autonomic impairment (Dry mouth, erectile dysfunction, and constipation.)
Pathophysiology of LEMS: decreased presynaptic acetylcholine release due to antibodies against the P/Q voltage-gated calcium channel

The diagnosis of LEMS: search for underlying SCLC or other malignancy.
Responds well both to treatment of the underlying cancer and to immunotherapy (IVIG, PE, oral immunosuppression, or rituximab

Autonomic neuropathic dysfunction associated with central neurological disorders

Autonomic manifestions seen with antibodies to the **voltage-gated potassium channel complex: contactin-associated proteinlike 2 (CASPR2) and leucine-rich glioma inactivated protein 1 (LGI1).** Morvan syndrome, autonomic manifestations + neuromyotonia and neuropsychiatric features.

Anti-NMDA receptor encephalitis: autonomic instability in 69% of patients
Cardiac dysrhythmia, temperature, blood pressure fluctuations, hyperhidrosis, and sialorrhea
Sympathetic dysfunction, patients with impaired cardiac autonomic function may have poorer outcomes

Dipeptidyl peptidase-like protein-6 (DPPX) abs: syndrome of encephalopathy, central hyperexcitability, and autonomic manifestations involving GI(diarrhea and weight loss). **Serum from an anti-DPPX patient was shown to cause hyperexcitability of enteric neurons.**

IgLON5 antibodies: sleep disorders, bulbar symptoms, gait problems, movement disorders, dysautonomia

Cardiac autonomic dysfunction and autonomic symptoms have also been reported in patients with neuromyelitis optica spectrum disorders (NMOSD), MS.

NEUROPATHIC SUB-TYPE POSTURAL TACHYCARDIA SYNDROME POTS

>30 bpm in heart rate on standing associated with symptoms of lightheadedness.

The clinical syndrome of POTS is likely heterogeneous.: Brain fog, sensory symptoms, GI symptoms Parasympathetic dysfunction and sudomotor function, symptoms that suggest GI/GU dysfunction ?autoimmunity or chronic inflammation may contribute to the pathophysiology

young women: demographic seen in many systemic autoimmune diseases.

Personal or family history of autoimmunity +/-

Subset of patients with POTS: Chronic inflammatory, autoimmune conditions = persistent activation of the sympathetic nervous system; small fiber neuropathy

+A variety of autoantibodies have been reported in association with POTS (antinuclear, antiphospholipid, and Sjögren antibodies).

Autoantibodies against autonomic nervous system : α -adrenergic and β -adrenergic receptors, angiotensin II type 1 receptors, (in low titers) ganglionic nicotinic ACh receptors

Acute or subacute onset after an immunologic stimulus (infection or physical stressor)

Immunomodulatory therapy is not indicated for POTS at this time.

Sjögren syndrome and other rheumatologic diseases

Sicca symptoms, lymphocytic infiltration of exocrine glands.

Peripheral nervous system involvement: sensory ganglionopathy and small-fiber neuropathy 50% autonomic dysfunction: decreased cardiovagal function, impaired sympathetic vasomotor activity, and tachycardic response to head-up tilt.

Autonomic features may precede the diagnosis of SS.

The pathophysiology of autonomic dysfunction in SS: immune-mediated small fiber neuropathy affecting autonomic nerves.

Systemic lupus erythematosus: parasympathetic dysfunction Rheumatoid arthritis: increased sympathetic nerve activity, reduced cardiac baroreflex sensitivity

Improvement in markers of autonomic function after the initiation of synthetic or biologic disease-modifying antirheumatic drugs.

Sarcoid, Scleroderma and psoriatic arthritis, AS

CHRONIC: DIABETIC AUTONOMIC NEUROPATHY

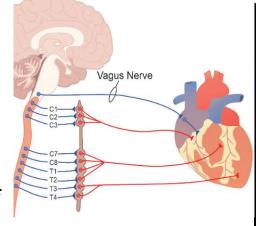
Most common cause of somatic and autonomic neuropathy The pathogenesis is complex, multifactorial

-generalized diabetic autonomic neuropathy:
-autonomic neuropathy associated with the prediabetic state
-treatment-induced neuropathy
- hypoglycemia-associated autonomic failure

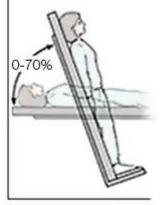
Generalized Diabetic Autonomic Neuropathy **GRADUALLY PROGRESSIVE**

Cardiovascular, gastrointestinal, urogenital, sudomotor, and pupillomotor function

Diabetic cardiovascular autonomic neuropathy: associated morbidity and mortality of diabetes mellitus.


Parasympathetic HRV abnormalities:
Increase in the patient's resting heart rate due to loss of vagal innervation loss of heart rate modulation, resulting in a fixed heart rate
Arrhythmias due to sympathovagal imbalance, prolonged QT, and silent myocardial infarction.

NEUROGENIC ORTHOSTATIC HYPOTENSION


Impaired vasoconstriction in dependent areas in response to orthostasis/postural change: due

sympathetic vasomotor denervation resulting in blood pooling in the splanchnic and peripheral vascular beds loss of heart rate modulation.

Proportional to disease duration, patient age, poor glycemic control, presence of microvascular complications, metabolic syndrome components: hyperlipidemia, and hypertension

	ВР	HR
Supine	165/79 mm Hg	65 bpm
Tilt	90/60 mm Hg	63 bpm

GI dysfunction: extrinsic innervation and the intrinsic enteric nervous system

Altered sensory perception: Increase in blood glucose concentration->may slow gastric emptying Esophageal symptoms: Reflux, regurgitation, and dysphagia; Incidence of Barrett esophagus in DM

Diabetic gastroparesis: 50%, Food may remain in the stomach for many hours or even days. Impaired gastric accommodation, visceral hypersensitivity, and gastric dysrhythmia

Implications for glycemic control: challenging to match insulin requirements with the slow, unpredictable food absorption.

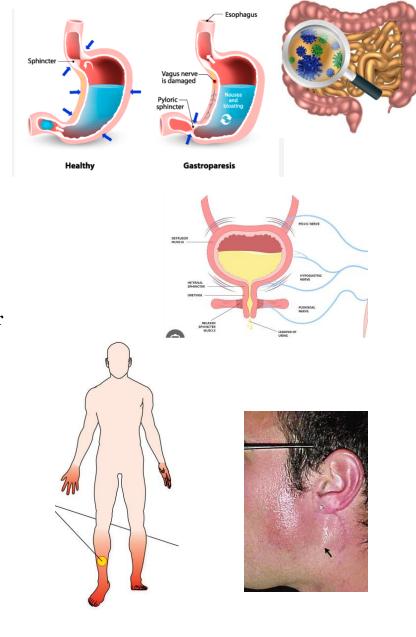
Aggravates OH: blood pooling in the splanchnic and mesenteric bed

Constipation: Worsened by gastroparesis with loss of gastrocolic reflex.

Diarrhea, Fecal incontinence due to anal sphincter incompetence or reduced rectal sensation, Small intestinal bacterial overgrowth, a consequence of slow intestinal transit

GU: Neurogenic bladder: Reduced sensation-> increased volume and pressure required to trigger the micturition reflex, \rightarrow Reduced detrusor activity \rightarrow weak flow, incomplete emptying, atonic bladder with overdistention/overflow incontinence.

Voiding dysfunction: frequency, nocturia, urinary retention, and incontinence.


Afferent and efferent autonomic nerve dysfunction, bladder smooth muscle urothelial dysfunction

Erectile failure: retrograde ejaculation due to impaired bladder neck closure during ejaculation. Autonomic neuropathy, vascular insufficiency with reduced nitric oxide production from the endothelium

Women: impaired lubrication

Sudomotor dysfunction: impaired sweating in a stocking-glove distribution, Sudomotor function is progressively lost: Compensatory hyperhidrosis in cranial and truncal regions.

Abnormal sweating (such as gustatory sweating) due to Receptor supersensitivity, aberrant regenerating nerve fibers

Case

A 32-year-old woman with type 1 diabetes mellitus presents with a 2-week history of orthostatic lightheadedness, diarrhea, and severe distal pain in her arms and legs.

On examination, she had a resting tachycardia with orthostatic hypotension and postural tachycardia. Sensory examination revealed impaired pain and temperature sensation to her knees with hyperalgesia and allodynia.

Her hemoglobin A1c was 6.5%. Ten weeks previously, her hemoglobin A1c was 17%. What is the likely diagnosis?

Subacute onset of a painful sensory and autonomic neuropathy in association with a rapid decrease in hemoglobin A1c causes treatment-induced neuropathy of diabetes mellitus.

AMYLOID NEUROPATHY

Insoluble, low-molecular-weight fibrillar proteins in a beta-pleated sheet configuration Amyloid fibrils are rigid, linear, and nonbranching, measuring ~ 7.5 nm to 10 nm in width.

The structure of the beta-pleated sheet permits Congo red stain binding-> apple-green birefringence.

- 1) Primary immunoglobulin light chain (AL) amyloidosis
- 2) Hereditary transthyretin amyloidosis with neuropathy (also known as familial amyloid polyneuropathy)

Primary (AL) Amyloidosis:

Pathogenesis: monoclonal population of bone marrow plasma cells produce kappa or lambda type immunoglobulin light chains or light chain fragments

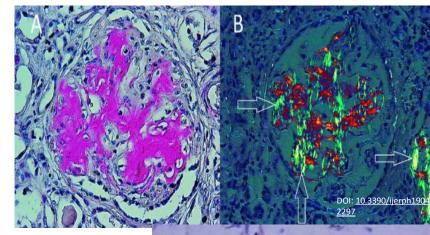
AL amyloidosis may be preceded by an increase in serum levels of free light chains.

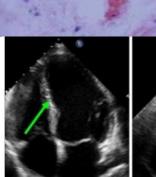
May start as Weight loss and fatigue, -> hepatomegaly, cutaneous ecchymoses, nonischemic cardiomyopathy with hypertrophy, nephrotic-range proteinuria

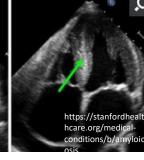
Autonomic involvement of the cardiovascular, gastrointestinal, and urogenital systems Autonomic dysfunction + pain and a length-dependent generalized polyneuropathy.

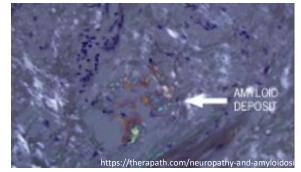
Serological diagnosis: immunofixation electrophoresis of serum and urine and serum free light chain assay. If normal, AL amyloidosis is unlikely.

If positive, the diagnosis should be confirmed pathologically by bone marrow, fat aspirate, or lip biopsy.


Treatment: melphalan and corticosteroids (dexamethasone or prednisolone).


This treatment improves survival, particularly reduction in serum or urine monoclonal protein.


Stem cell transplantation (not suitable for all patients)


Immunomodulating drugs: thalidomide, and lenalidomide; the proteasome inhibitor bortezomib + alkylating agents such as melphalan and cyclophosphamide

Hereditary Transthyretin Amyloidosis

Progressive, debilitating, multisystem, life-threatening disease, 3rd-5th decade Deposition of misfolded transthyretin in tissues

Autosomal dominant inherited disease amyloid precursor is a mutant protein. >120 mutations of the TTR gene

Mutant transthyretin is a 14-kDa 127 amino acid: transport protein for thyroxine and retinol-binding protein Most commonly observed mutation is a substitution of methionine for valine at position 30 (Val30Met). Less frequent mutations in the genes encoding for apolipoprotein A-I, fibrinogen $A\alpha$, lysozyme, and gelsolin

Portugal, Brazil, and Sweden.

Other TTR variants are seen in Japan, Europe, and the Americas

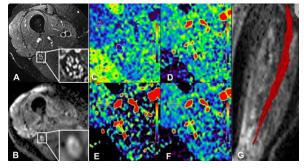
Phenotypic differences exist, even among individuals carrying the same mutation. These differences depend in part on geographic location

Autonomic manifestations are prominent and may be the presenting feature Orthostatic intolerance; GI/GU Sensory symptoms such as numbness, pain, paresthesia, dysesthesia

Diagnosis of pathogenic mutation: TTR gene sequencing.

Pathologic confirmation requires histologic confirmation of amyloid deposition (eg: skin biopsy amyloid deposition)
Mass spectrometry—based proteomics: Diagnosis and typing of AL and hereditary amyloidosis (high specificity but limited sensitivity)

Magnetic resonance neurography and diffusion tensor imaging: non-invasively identify early subclinical microstructural changes in pre-symptomatic carrier


TREATMENT: Liver transplant: removes principal source of variant transthyretin and reduces circulating transthyretin by up to 90%,

Pharmacotherapeutic interventions that inhibit amyloidogenesis:

FDA – approved: Patisiran, a small interfering RNA delivered as an IV infusion every 3 weeks

FDA –approved: Inotersen, an antisense oligonucleotide administered subcutaneously 3 times a week on alternate days in the first week and then once weekly for 64 weeks

Other pharmacologic interventions include the mutant transthyretin stabilizers tafamidis, diflunisal

Colombat M, et al. PMID: 35924579

TOXIC AUTONOMIC NEUROPATHIES

CHRONIC

ALCOHOL INDUCED AUTONOMIC NEUROPATHY

Axonal sensorimotor neuropathy + sudomotor dysfunction Cardiovascular autonomic dysfunction, Visceral autonomic neuropathy: a/w higher TLDE (Total Daily Alcohol Consumption x 365 x no. of years)

Malnutrition is not required for the presence of autonomic dysfunction (autonomic dysfunction can occur in absence of B_{12} deficiency)

Abstinence:, positive impact, though the evidence base is weak.

Effect of abstinence on respiratory sinus arrhythmia (12 weeks follow-up), HRV as early as 1-6 weeks → 6-24 months, sweating after 12 months

CYTOTOXIC AGENTS/CHEMOTHERAPY:

vincristine, which can induce vagal neuropathy (resulting in significant gastrointestinal dysmotility), bladder dysfunction, and orthostatic hypotension.

vinca alkaloids; platinum derivatives; taxanes; proteasome inhibitors such as bortezomib;

immunomodulatory agents such as thalidomide, enalidomide, and pomalidomide; the epothilones; doxorubicin; and cytosine arabinoside

ACUTE/SUBACUTE

ENVIRONMENTAL TOXINS, INDUSTRIAL TOXINS:

Marine toxins: affect ion transport (sodium and calcium)

Ciguatoxins are potent sodium channel—activating toxins; paresthesia, dysesthesia, and pain + Autonomic features include hypersalivation, bradycardia, hypotension, and mydriasis. IV mannitol may reverse the acute manifestations.

Jellyfish ->massive catecholamine release->Irukandji syndrome (Headache, muscle pain, tachycardia, hypertension, N/V, Diaphoresis abdominal pain, pulmonary edema)

Box jellyfish venom: vasospasm, arrhythmias, and parasympathetic failure.
Treatment with verapamil can be lifesaving.

Organic solvents, arsenic, mercury, thallium, and other heavy metals, acrylamide, rat poison

INFECTIOUS AUTONOMIC NEUROPATHIES

RETROVIRAL INFECTIONS:

Human immunodeficiency virus (HIV) (Heart rate variability is reduced even in early stages of infection) Human T-lymphotropic virus (Orthostatic hypotension, urinary dysfunction and hypohidrosis) Herpes viruses, flavivirus, enterovirus and lyssavirus infections.

Varicella zoster reactivation from autonomic ganglia: visceral disease and chronic intestinal pseudo-obstruction.

Tick-borne encephalitis virus infections (Urinary retention and intestinal pseudo-obstruction)

Rabies: Hydrophobia, hypersalivation, dyspnea, photophobia, and piloerection:

Chagas Disease: Autonomic dysfunction from vagal denervation (parasympathetic), neuronal depopulation in chagasic heart disease and myenteric plexus, megacolon, megaesophagus and cardiomyopathy.

Leprosy: Subclinical autonomic neuropathy (anhidrosis, impaired sweating function, localised alopecia, and reduced HRV)

Diphtheritic polyneuropathy, tetanus and botulism: Toxins affect the autonomic nervous system.

General Treatment of Autonomic Manifestations:

Orthostatic hypotension

Non Pharmacological Interventions: Fluids, Salt/electrolytes, Compression Stockings, Abdominal Binders Pharmacological Interventions: Mineralocorticoid (fluorocortisone), midodrine, α -1-adrenoreceptor agonist

Orthostatic intolerance with postural tachycardia Propranolol, ivabradine Pyridostigmine

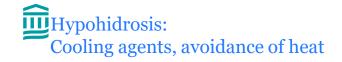
Gastrointestinal autonomic dysfunction control of blood glucose concentrations: improves gastric motility. Small portions, frequent meals, protein better Gastroparesis: metoclopramide, domperidone, erythromycin Constipation: fiber, fluids, stool softeners, osmotic laxative.

Genital autonomic neuropathy:

Bladder diary, voiding schedules

Self-Catheterisation

Cholinergic agents: bethanechol


ED: Phosphodiesterase type 5 inhibitors: inhibit breakdown of cyclic GMP, increases smooth-muscle relaxation and blood flow; eg: Sildenafil, tadalafil. Intracorporeal injection of vasoactive substances, devices, implants.

Vaginal lubricants for women

Sweating abnormalities:

Hyperhidrosis:

Anticholinergic agents such as trihexyphenidyl, glycopyrrolate Intracutaneous injection of botulinum toxin type A , Sympathectomy

Summary/Key Take-Away Points

Among the Hereditary Sensory Autonomic Neuropathies:

Riley Day syndrome/familial dysautonomia is with prominent autonomic manifestations

Fabry's disease must be considered in young adults presenting with sensory and autonomic neuropathy + cerebrovascular + myocardial manifestations+ renal dysfunction + skin findings. Enzyme Replacement is key

Sodium channelopathies are associated with small fiber neuropathy, extreme pain and erythromelalgia, and respond to sodium channel blocking agents

Among the immune mediated autonomic neuropathies:

Autoimmune autonomic ganglionopathy presents as a subacute/acute pandysautonomia and have antibodies against ganglionic nicotinic ACh receptor (α3 subunit) typically greater than 1.0 nmol/L and respond to immunomodulatory/immunosuppressant therapy

Paraneoplastic autonomic neuropathies typically seen with anti-Hu, anti-CRMP5 antibodies

Systemic autoimmune disorders namely Sjogrens, SLE, RA and others are associated with autonomic (small fiber neuropathy)

Among the chronic autonomic neuropathies:

Diabetic autonomic neuropathy can be general, a/w prediabetic, and treatment-induced DAN. Cardiac autonomic neuropathy is frequent cause of morbidity/mortality in DAN

Amyloid neuropathies can be primary or hereditary, with multisystem manifestations. In primary amyloid neuropathy, screening includes SPEP with IF; In hereditary amyloid neuropathy: genetic testing, followed by pathological confirmation in both

Toxic autonomic neuropathies can be caused from alcohol, chemotherapeutic agents and environmental and marine toxins.

Remember glycemic control, control of metabolic syndrome risk factors and alcohol abstinence play a significant role in autonomic neuropathy (halting progression and /or improvement)

Infectious autonomic neuropathies can be seen in a variety of retroviral diseases, lyme disease, Chagas disease, and others

REFERENCES

Vernino S. Autoimmune Autonomic Disorders. Continuum (Minneap Minn). 2020 Feb;26(1):44-57.

Freeman R. Autonomic Peripheral Neuropathy. Continuum (Minneap Minn). 2020 Feb;26(1):58-71.

- Young RR, Asbury AK, Corbett JL, Adams RD. Pure pan-dysautonomia with recovery. Brain 1975;98(4):613-636.
- *Suarez GA, Fealey RD, Camilleri M, Low PA. Idiopathic autonomic neuropathy: clinical, neurophysiologic, and follow-up studies on 27 patients. Neurology 1994:44(9):1675-1682.
- Vernino S, Low PA, Fealey RD, et al. Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med 2000;343(12):847—
- Baker SK, Chow BM, Vernino SA. Transient neonatal autoimmune autonomic ganglionopathy. Neurol Neuroimmunol Neuroinflamm 2014;1(3):e35.
- *Klein CM, Vernino S, Lennon VA, et al. The spectrum of autoimmune autonomic neuropathies. Ann Neurol 2003;53(6):752-758. Gibbons CH, Freeman R. Antibody titers predict clinical features of autoimmune autonomic ganglionopathy. Auton Neurosci 2009;146(1–2):8–12
- Cutsforth-Gregory JK, McKeon A, Coon EA, et al. Ganglionic antibody level as a predictor of severity of autonomic failure. Mayo Clin Proc 2018;93(10):1440–1447.
- •McKeon A, Lennon VA, Lachance DH, et al. Ganglionic acetylcholine receptor autoantibody: oncological, neurological, and serological accompaniments. Arch Neurol 2009;66(6):735-741.
- •Li Y, Jammoul A, Mente K, et al. Clinical experience of seropositive ganglionic acetylcholine receptor antibody in a tertiary neurology referral center. Muscle Nerve 2015:52(3):386-391
- *Kimpinski K, Iodice V, Sandroni P, et al. Sudomotor dysfunction in autoimmune autonomic ganglionopathy. Neurology 2009;73(18):1501-1506.
- Schroeder C, Vernino S, Birkenfeld AL, et al. Plasma exchange for primary autoimmune autonomic failure. N Engl J Med 2005;353(15):1585–1590.
- •Muppidi S, Scribner M, Gibbons CH, et al. A unique manifestation of pupillary fatique in autoimmune autonomic ganglionopathy. Arch Neurol 2012;69(5):644-648. Iodice V, Kimpinski K, Vernino S, et al. Efficacy of immunotherapy in seropositive and seronegative putative autoimmune autonomic ganglionopathy. Neurology 2009:72(23):2002-2008
- Imrich R, Vernino S, Eldadah BA, et al. Autoimmune autonomic ganglionopathy: treatment by plasma exchanges and rituximab. Clin Autoin Res 2009;19(4):259–262. •Koike H, Watanabe H, Sobue G. The spectrum of immune-mediated autonomic neuropathies: insights from the clinicopathological features. J Neurol Neurosurg
- Psychiatry 2013;84(1):98-106. Golden EP, Bryarly MA, Vernino S. Seronegative autoimmune autonomic neuropathy: a distinct clinical entity. Clin Auton Res 2018;28:115-123.
- •Colan RV, Snead OC 3rd, Oh SJ, Kashlan MB. Acute autonomic and sensory neuropathy. Ann Neurol 1980;8(4):441-444
- •Koike H, Atsuta N, Adachi H, et al. Clinicopathological features of acute autonomic and sensory neuropathy. Brain 2010;133(10):2881–2896.
- Lucchinetti CF. Camilleri M. Lennon VA. Gastrointestinal dysmotility spectrum in patients seropositive for paraneoplastic type 1 anti-neuronal nuclear autoantibodies. Clin Auton Res 1994;4:206.
- Rauer S, Andreou I. Tumor progression and serum anti-HuD antibody concentration in patients with paraneoplastic neurological syndromes. Eur Neurol 2002:47(4):189-195.
- •Wirtz PW, Lang B, Graus F, et al. P/Q-type calcium channel antibodies, Lambert-Eaton myasthenic syndrome and survival in small cell lung cancer. J Neuroimmunol 2005:164(1-2):161-165.
- O'Suilleabhain P, Low PA, Lennon VA. Autonomic dysfunction in the Lambert-Eaton myasthenic syndrome: serologic and clinical correlates. Neurology 1998;50(1):88-

Zaeem Z, Siddiqi ZA, Zochodne DW. Autonomic involvement in Guillain-Barré syndrome: an update. Clin Auton Res 2018.

- Josephs KA, Silber MH, Fealey RD, et al. Neurophysiologic studies in Morvan syndrome. J Clin Neurophysiol 2004;21(6):440-445.
- *Salehi N, Yuan AK, Stevens G, et al. A case of severe anti-N-methyl D-aspartate (anti-NMDA) receptor encephalitis with refractory autonomic instability and elevated intracranial pressure. Am J Case Rep 2018;19:1216–1221
- •. Boronat A, Gelfand JM, Gresa-Arribas N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013:73(1):120-128.
- •Goodman BP, Crepeau A, Dhawan PS, et al. Spectrum of autonomic nervous system impairment in Sjögren syndrome. Neurologist 2017;22(4):127-130

•Goodman BP. Immunoresponsive autonomic neuropathy in Sjögren syndrome—case series and literature review. Am J Ther 2019;26:e66-e71.

- Matusik PS, Matusik PT, Stein PK. Heart rate variability in patients with systemic lupus erythematosus: a systematic review and methodological considerations. Lupus 2018:27(8):1225-1239.
- *Adlan AM, Paton JF, Lip GY, et al. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. J Physiol 2017;595(3):967-
- Adlan AM, Lip GY, Paton JF, et al. Autonomic function and rheumatoid arthritis: a systematic review. Semin Arthritis Rheum 2014;44(3):283–304.
- Amaral TN, Peres FA, Lapa AT, et al. Neurologic involvement in scleroderma: a systematic review. Semin Arthritis Rheum 2013;43(3):335–347.
- Syngle A, Verma I, Garg N, Krishan P. Autonomic dysfunction in psoriatic arthritis. Clin Rheumatol 2013;32(7):1059–1064
- Vernino S, Stiles LE. Autoimmunity in postural orthostatic tachycardia syndrome: Current understanding. Auton Neurosci 2018;215:78–82. Thieben MJ, Sandroni P, Sletten DM, et al. Postural orthostatic tachycardia syndrome: the Mayo clinic experience. Mayo Clin Proc 2007;82(3):308-313
- Shaw BH, Stiles LE, Bourne K, et al. The face of postural tachycardia syndrome: a cross-sectional community-based survey. Heart Rhythm 2016;13:S32867.
- Blitshteyn S. Autoimmune markers and autoimmune disorders in patients with postural tachycardia syndrome (POTS). Lupus 2015;24(13):1364-1369.
- •Freeman R, Chapleau MW. Testing the autonomic nervous system. Handb Clin Neurol 2013;115:115-136

Cheshire WP Jr. Autonomic history, examination, and laboratory evaluation. Continuum (Minneap Minn) 2020;26(1, Autonomic Disorders):25-43.

- •Neil HA, Thompson AV, John S, et al. Diabetic autonomic neuropathy: the prevalence of impaired heart rate variability in a geographically defined population. Diabet Med 1989;6(1):20-24.
- Töyry JP, Niskanen LK, Mäntysaari MJ, et al. Occurrence, predictors, and clinical significance of autonomic neuropathy in NIDDM. Ten-year follow-up from the diagnosis. Diabetes 1996;45(3):308-315.
- Zoppini G, Cacciatori V, Raimondo D, et al. Prevalence of cardiovascular autonomic neuropathy in a cohort of patients with newly diagnosed type 2 diabetes: the Verona newly diagnosed type 2 diabetes study (VNDS). Diabetes Care 2015;38(8):1487-1493.
- Smith AG. Impaired glucose tolerance and metabolic syndrome in idiopathic neuropathy. J Peripher Nerv Syst 2012;17(Suppl 2):15-21.
- •Gibbons CH. Freeman R. Treatment-induced neuropathy of diabetes: an acute, iatrogenic complication of diabetes. Brain 2015;138(1):43-52.
- •Rao AD, Bonyhay I, Dankwa J, et al. Baroreflex sensitivity impairment during hypoglycemia: implications for cardiovascular control. Diabetes 2016;65(1):209–215.
- Adler GK Bennhay J, Failing H, et al. Antecedent hypoglycemia impairs autonomic cardiovascular function: implications for rigorous glycemic control. Diabetes 2009;58(2):360–366.

 Brooks BP et al. Triple-A syndrome with prominent ophthalmic features and a novel mutation in the AAAS gene: a case report. BMC Ophthalmol. 2004 Jun 24;47.

•Mathis S, Magy L, Diallo L, et al. Amyloid neuropathy mimicking chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 2012;45(1):26–31.

*Planté-Bordeneuve V, Ferreira A, Lalu T, et al. Diagnostic pitfalls in sporadic transthyretin familial amyloid polyneuropathy (TTR-FAP). Neurology 2007;69(7):693-698.

•Conceicão I, Gonzalez-Duarte A, Obici L, et al. "Red-flaa" symptom clusters in transthyretin familial amyloid polyneuropathy. J Peripher Nerv Syst 2016;21(1):5-9.

•Gertz MA. Immunoglobulin light chain amyloidosis: 2018 update on diagnosis, prognosis, and treatment. Am J Hematol 2018;93(9):1169–1180.

•Falk RH, Skinner M. The systemic amyloidoses: an overview. Adv Intern Med 2000;45:107-137

Cohen AD, Comenzo RL. Systemic light-chain amyloidosis: advances in diagnosis, prognosis, and therapy. Hematology Am Soc Hematol Educ Program 2010;2010:287–294.

*Wang AK, Fealey RD, Gehrking TL, Low PA. Patterns of neuropathy and autonomic failure in patients with amyloidosis. Mayo Clin Proc 2008;83(11):1226-1230.

*Kumar SK, Gertz MA, Lacy MQ, et al. Recent improvements in survival in primary systemic amyloidosis and the importance of an early mortality risk score. Mayo Clin Proc 2011;86(1):12-18. •Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev 2014;40(7):872-882

Ando Y, Nakamura M, Araki S. Transthyretin-related familial amyloidotic polyneuropathy. Arch Neurol 2005;62(7):1057-1062.

*Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 2007;36(4):411-423.

*Saraiva MJM, Costa PP, Goodman DS. Biochemical marker in familial amyloidotic polyneuropathy, Portuguese type. Family studies of transthyretin (prealbumin)-methionine-30 variant. J Clin Invest 1985;76(6):2171-2177.

. Hund E, Linke RP, Willig F, Grau A. Transthyretin-associated neuropathic amyloidosis. Pathogenesis and treatment. Neurology 2001;56(4):431–435.

Plante-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol 2011;10(12):1086-1097.

. Koike H, Tanaka F, Hashimoto R, et al. Natural history of transthyretin Val30Met familial amyloid polyneuropathy: analysis of late-onset cases from non-endemic areas. J Neurol Neurosurg Psychiatry 2012;83(2):152-158.

*Misu K, Hattori N, Nagamatsu M, et al. Late-onset familial amyloid polyneuropathy type I (transthyretin Met30-associated familial amyloid polyneuropathy) unrelated to endemic focus in Japan Clinicopathological and genetic features. Brain 1999;122(pt 10):1951-1962.

*Ebenezer GJ, Liu Y, Judge DP, et al. Cutaneous nerve biomarkers in transthyretin familial amyloid polyneuropathy. Ann Neurol 2017;82(1):44-56.

*Vrana JA, Theis JD, Dasari S, et al. Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics. Haematologica 2014;99(7):1239–1247.

*Kollmer J, Hund E, Hornung B, et al. In vivo detection of nerve injury in familial amyloid polyneuropathy by magnetic resonance neurography. Brain 2015;138(pt 3):549-562.

*Yamamoto S, Wilczek HE, Nowak G, et al. Liver transplantation for familial amyloidotic polyneuropathy (FAP): a single-center experience over 16 years. Am J Trans 2007;7(11):2597-2604

Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018;379:11–21

. Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018;379:22-31.

*Coelho T, Maia LF, Martins da Silva A, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology 2012;79(8):785-792.

Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 2013;310(24):2658–2667.

*Faber CG, Hoeijmakers JG, Ahn HS, et al. Gain of function Nav 1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2012;71(1):26–39

*Han C, Hoeijmakers JG, Liu S, et al. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain 2012;135(pt 9):2613-2628. Han C, Hoeijmakers JG, Ahn HS, et al. Nav1.7-related small fiber neuropathy: impaired slow-inactivation and DRG neuron hyperexcitability. Neurology 2012:78(21):1635-1643.

*Huang J, Yang Y, Zhao P, et al. Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci

•Faber CG, Lauria G, Merkies IS, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 2012;109(47):19444–19449

*Huang J, Han C, Estacion M, et al. Gain-of-function mutations in sodium channel Na(v)1. 9 in painful neuropathy. Brain 2014;137(pt 6):1627-1642.

*Klein CJ, Lennon VA, Aston PA, et al. Chronic pain as a manifestation of potassium channel-complex autoimmunity. Neurology 2012;79(11):1136-1144.

*Irani SR, Pettingill P, Kleopa KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72(2):241-255

 Gadoth A, Pittock SJ, Dubey D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-lqG-positive patients. Ann Neurol 2017;82(1):79–92. *Rotthier A, Baets J, Timmerman V, Janssens K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 2012;8(2):73-85.

. Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H. Familial dysautonomia: History, genotype, phenotype and translational research. Prog Neurobiol 2017;152:131–148.

*Slaugenhaupt SA, Blumenfeld A, Gill SP, et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 2001;68(3):598-605

•Macefield VG, Norcliffe-Kaufmann L, Gutierrez J, et al. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome? Brain 2011;134(pt 11):3198-3208.

Norcliffe-Kaufmann L, Axelrod F, Kaufmann H. Afferent baroreflex failure in familial dysautonomia. Neurology 2010;75(21):1904-1911.

•Indo Y. Nerve growth factor and the physiology of pain: lessons from congenital insensitivity to pain with anhidrosis. Clin Genet 2012;82(4):341-350. *Rotthier A, Baets J, Vriendt ED, et al. Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 2009;132(pt 10):2699–2711.

• Biegstraaten M, van Schaik IN, Wieling W, et al. Autonomic neuropathy in Fabry disease: a prospective study using the Autonomic Symptom Profile and cardiovascular autonomic function tests. BMC

Kimber J. McLean BN, Prevett M, Hammans SR. Allgrove or 4 "A" syndrome: an autosomal recessive syndrome causing multisystem neurological disease. J Neurol Neurosurg Psychiatry

2003:74(5):654-657. 95. Grisold A. Grisold W, Windebank AJ; Staff NP. Chemotherapy-induced peripheral neuropathy: a current review. Ann Neurol 2017;81(6):772-781.

•Freeman R. Autonomic peripheral neuropathy. Lancet 2005;365(9466):1259-1270. Burnett JW, Weinrich D, Williamson JA, et al. Autonomic neurotoxicity of jellyfish and marine animal venoms. Clin Auton Res 1998;8(2):125-130.

•Carod-Artal FJ. Infectious diseases causing autonomic dysfunction. Clin Auton Res. 2018 Feb;28(1):67-81.

•Freeman R. Diabetic autonomic neuropathy. Handb Clin Neurol 2014;126:63-79

*Du YT, Rayner CK, Jones KL, et al. Gastrointestinal symptoms in diabetes: prevalence, assessment, pathogenesis, and management. Diabetes Care 2018;41(3):627-637.

*Schvarcz E, Palmér M, Aman J, et al. Physiological hyperglycemia slows gastric emptying in normal subjects and patients with insulin-dependent diabetes mellitus. Gastroenterology 1997;113(1):60-

*Thazhath SS, Jones KL, Horowitz M, Rayner CK. Diabetic gastroparesis: recent insights into pathophysiology and implications for management. Expert Rev Gastroenterol Hepatol 2013;7(2):127-139.

•Maleki D, Locke GR 3rd, Camilleri M, et al. Gastrointestinal tract symptoms among persons with diabetes mellitus in the community. Arch Intern Med 2000;160(18):2808-2816.

*Kempler P, Amarenco G, Freeman R, et al. Management strategies for gastrointestinal, erectile, bladder, and sudomotor dysfunction in patients with diabetes. Diabetes Metab Res Rev

•Frimodt-Moller C, Mortensen S. Treatment of diabetic cystopathy. Ann Intern Med 1980;92(2 pt 2):327-328.

Yuan Z, Tang Z, He C, Tang W. Diabetic cystopathy: a review. J Diabetes 2015;7(4):442–447.

Golbidi S, Laher I. Bladder dysfunction in diabetes mellitus. Front Pharmacol 2010;1:136.

*Araujo AB, Hall SA, Ganz P, et al. Does erectile dysfunction contribute to cardiovascular disease risk prediction beyond the Framingham risk score? J Am Coll Cardiol 2010;55(4):350–356

• Enzlin P, Mathieu C, Van den Bruel A, et al. Sexual dysfunction in women with type 1 diabetes: a controlled study. Diabetes Care 2002;25(4):672-677.

•Fealey RD, Low PA, Thomas JE. Thermoregulatory sweating abnormalities in diabetes mellitus. Mayo Clin Proc 1989;64(6):617-628.

Blair DI, Sagel J, Taylor I. Diabetic gustatory sweating. South Med J 2002;95(3):360-362.

Golebiowski T, et al. Multisystem Amyloidosis in a Coal Miner with Silicosis: Is Exposure to Silica Dust a Cause of Amyloid Deposition? Int J Environ Res Public Health. 2022 Feb 17;19(4):2297. doi: 10.3390/ijerph19042297. PMID: 35206498; PMCID: PMC8871531.

Colombat M, et al. Mass spectrometry-based proteomics in clinical practice amyloid typing: state-of-the-art from a French nationwide cohort. Haematologica. 2022 Dec 1;107(12):2983-2987. doi: 10.3324/haematol.2022.281431. PMID: 35924579; PMCID: PMC9713554.

https://therapath.com/neuropathy-and-amyloidosi

https://badgut.org/information-centre/a-z-digestive-topics/gastroparesis/

https://www.cmuh.cmu.edu.tw/HealthEdus/Detail EN

Terkelsen AJ, et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. 2017 Nov;16(11):934-944.

https://exodontia.info/frevs-syndrome-austatory-sweating/

. Espinoza L, Fedorchak S, Boychuk CR. Interplay Between Systemic Metabolic Cues and Autonomic Output: Connecting Cardiometabolic Function and Parasympathetic Circuits. Front Physiol. 2021 Mar 11;12:624595.

*Marathe C, Horowitz M. Diabetic autonomic neuropathy: an oft neglected entity. https://endocrinology.medicinetoday.com.au/et/2016/february/regular-series/diabetic-autonomic-neuropathy-oft-

https://www.mayoclinic.org/departments-centers/childrens-center/overview/specialty-groups/general-pediatric-adolescent-medicine/autonomic-dysfunction-clinic *Steplen A, et al. Paroxysmal extreme pain disorder in family with c.3892G > T (p. Val1298Phe) in the SCN9A gene mutation - case report. BMC Neurol. 2020 May 13;20(1):182

Kronenberg Get al. The Classic Triad of Triple A (Allgrove) Syndrome. Neurol Clin Pract. 2021 Dec;11(6):e916-e917.

Aftab S, et al. Allgrove Syndrome: Adrenal Insufficiency with Hypertensive Encephalopathy. J Coll Physicians Surg Pak. 2016 Sep;26(9):790-2. *Davis MD, Genebriera J, Sandroni P, Fealey RD. Thermoregulatory sweat testing in patients with erythromelalgia. Arch Dermatol. 2006 Dec;142(12):1583-8.

Nevoret ML. Sudomotor Function Testing: The Science, Clinical Applications, and Prospects for Preventive, Diagnostic, and Clinical Care. Medicine 2012